Ультразвуковой анемометр на двух HC-SR04

Ранее был сделан прототип анемометра из одного ультразвукового дальномера HC-SR04. Он умел рассчитывать проекцию скорости ветра на линию между приемником и передатчиком. Для получения вектора скорости ветра на плоскости (2D) требуется вторая координата, которую мы получим, если добавим второй датчик перпендикулярно первому. В этом случае можно закрепить анемометр стационарно — отпадает необходимость использовать флюгер и как-то организовывать подвижные контакты.

Первая версия

Сказано — сделано, причем основательно.полипропилен

Из обрезков полипропиленовых труб сварил крестовину. Все датчики отпаял и удлинил проводами, которые проложил внутри труб. Расстояние между датчиками получилось 70 см. 

Код программы такой.

Код программы первой версии двухосевого анемометра

#include <dht.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#define Trig 4
#define Echo 2
#define Trig2 8
#define Echo2 12
#define ONE_WIRE_BUS 7
#define Steps

dht DHT;

#define DHT21_PIN 0
static const float defDist  = .6985; // m
static const float defDist2 = .713; // m

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature. 
DallasTemperature sensors(&oneWire);
void setup() 
{ 
pinMode(Trig, OUTPUT);
pinMode(Echo, INPUT);
pinMode(Trig2, OUTPUT);
pinMode(Echo2, INPUT);
Serial.begin(57600); 
  // Start up the library
  sensors.begin();
Serial.println("X Distance  Tds18820  Tcalc Tdht  Hum V");
} 
unsigned long impulseTime=0; 

void loop() 
{
      // READ DATA
    //Serial.print("DHT21, \t");
    int chk = DHT.read21(DHT21_PIN);
    float DHTtemp = 10; 
    float DHThum = 50;
    switch (chk)
    {
    case DHTLIB_OK:
//        Serial.print("OK,\t");
      DHTtemp =DHT.temperature; 
      DHThum = DHT.humidity;
      break;
    default:
        Serial.print("DHT Error,\t");
        break;
    }

    // DISPLAY DATA
//    Serial.print(DHThum, 1);
//    Serial.print(",\t");
    //Serial.println(DHTtemp, 1);

    sensors.requestTemperatures(); // Send the command to get temperatures DS18820

  float dist = 0;
  float dist2 = 0;
  float temp = sensors.getTempCByIndex(0); //DHTtemp;

unsigned long impulseTime=0; 
unsigned long impulseTime2=0; 
int N=250;
for (int i = 0; i <N; i++) { 
digitalWrite(Trig, HIGH); delayMicroseconds(10); digitalWrite(Trig, LOW); 
impulseTime +=pulseIn(Echo, HIGH); delay(50); 
digitalWrite(Trig2, HIGH); delayMicroseconds(10); digitalWrite(Trig2, LOW); 
impulseTime2 +=pulseIn(Echo2, HIGH); delay(50); 
} 
//float P = 101325; 
float P = 761 * 133.3; 
float M = (28.95-10.934*DHT.humidity/100*(133.3*4.579*exp(17.14*temp/(235.3+temp)))/P)/1000; 
float R= 8.31447; float X = 1.4 * R/M ; //X = 287; 
float c = sqrt( X *(temp+273.15)); 
dist = impulseTime * c / 1e6 /N; 
dist2 = impulseTime2 * c / 1e6 /N; 
float Speed_of_sound = defDist*N/impulseTime * 1e6; 
float Speed_of_sound2 = defDist2*N/impulseTime2 * 1e6; 
float Tcalc = sq(Speed_of_sound)/X - 273.15; 
float v = c- Speed_of_sound; 
float v2 = c- Speed_of_sound2; float v3 = sqrt(sq(v) + sq(v2)); 
int wd = int(atan(-v/v2)*180/3.1416); 
if (v>0) {wd+=90;} else {wd+=270;}

//Serial.println("X Distance  Tds18820  Tcalc Tdht  Hum V");
//Serial.println(String(impulseTime) + char(9) + String(impulseTime2));
Serial.println(String(impulseTime) + char(9) + String(impulseTime2) + char(9) + String(dist, 5) + char(9) + String(dist2, 5) + char(9) + String(temp) + char(9) + String(Tcalc) + char(9) + String(DHTtemp)+ char(9) + String(DHThum) + char(9) + String(v) + char(9) + String(v2) + char(9) + String(v3) + char(9) + String(wd));

}

Два последних числа дают искомую горизонтальную скорость и направление ветра. Направление рассчитывается в виде азимута к направлению на север и дается в градусах. Вращение по часовой стрелке.

Увы, результаты меня разочаровали.
протокол
При усреднении в 25 измерений, показания в спокойном воздухе прыгают в среднем до 1.5 м/с, при этом измерения выдаются примерно раз в сек. Если усреднить в 10 раз больше показаний ситуация улучшается, но кардинально проблему не решает. К тому же судя по графику скоростей в двух осях, одна пара датчиков фонит существенно больше другой. диаграмма скоростей по осямСкорее всего дело в проводах, которыми я удлинил датчики. Придется переделывать.

Вторая версия

Есть еще одна причина все переделать. Как отмечалось в первой теоретической части, скорость звука изменится на 1 м/с при изменении температуры примерно на 1.5 °С. Погрешности измерений по обоим осям складываются. Нужно понимать, что порывы теплого или холодного воздуха могут существенно исказить показания такого анемометра. Нет смысла в показаниях 4 м/с при легком дуновении теплого ветерка. диаграмма температуры и скорости Из диаграммы натурного эксперимента видно, что даже медленное изменение температуры вызывает дрейф измеренной скорости, а быстрое изменение температуры на 1 градус скачком поменяло измеренную скорость ветра на 1.5 м/с, в то время как датчик температуры медленно отрабатывает это изменение. Важно заметить, что эксперимент этот проходил прямо у меня на столе и изменение температуры было естественным — я ничего не трогал и искусственно ничего не нагревал.

И тут на помощь приходит тот же принцип, что и при измерении расстояния. Если помним, датчики у оригинального HC-SR04 расположены вместе, поэтому результаты не зависят от наличия ветра. Если измерить скорость звука на известном расстоянии сначала в одном направлении, а затем в другом, то разница этих двух показаний, деленная пополам и будет искомой скоростью ветра в проекции на эту ось. При этом, изменение температуры в диапазоне ±25°С дает погрешность ±4%, что абсолютно не критично и мы можем обойтись вообще без термометра. Да и зачем нам термометр? Если мы знаем время прохождения сигнала в обоих направлениях, то по формулам из прошлой статьи мы легко вычислим температуру, а значит сможем уточнить скорость ветра.
Есть лишь одна маленькая загвоздка — придется использовать два HC-SR04 на одной оси. В промышленных образцах датчики попеременно выполняют роль приемника и передатчика. В нашем случае для этого придется подключить пищалки напрямую к arduino и программно генерировать 8 импульсов 40 кГц на одной, после чего вычленять их из другой. Зная про определенные сложности на этом пути, мне представляется проще купить еще 2 датчика по 55 рублей и попытаться обойтись малой кровью. Этим я займусь в следующий раз. А пока на двух датчиках сделаю измерение скорости ветра по одной оси и измерение температуры в такой конфигурации. Главная проблема здесь убрать помехи, которые дают такой большой разброс показаний в спокойном воздухе.

Конструкция

Вооружившись паяльником конструкция была беспощадно распаяна на составляющие. Новую версию решил не делать так основательно, а зря. Никогда не угадаешь, где найдешь, где потеряешь. Получилось как-то так.
прототип 2 датчика вместе
Во-первых, приемник расположил как можно ближе к плате, а передатчик удалил всего лишь на 20 см. Второй комплект перевернул на 180 градусов и пищалки скрепил попарно изолентой. Чем точнее соблюсти соосность обоих пар датчиков, тем лучше. В идеале мы должны получить абсолютно идентичные показания скорости прохождения сигнала в обоих направлениях в спокойном воздухе. Натурные испытания подтвердили нашу теорию. В такой конфигурации получается мало помех и весьма точные показания независимо от температуры, что подтверждается графиком ниже.
диаграмма температур и скорости v2
Вначале я пробовал просто дуть по направлению от синей пары к черной. Моих легких явно недостаточно. Но любопытный факт — воздух в легких успел нагреться на 1°, что раньше вызвало бы скачок скорости на 1.5 м/с, т.к. DS18B20 просто ничего не заметил. Отметим, что мои легкие способны дать всего лишь 0.5 м/с. Дальше я включил большой напольный вентилятор и направил все также от синего к черному. Видно как пошел более прохладный воздух из глубины комнаты и даже DS18B20 начал отрабатывать это снижение, но теперь его значения не используются для расчета скорости. Сделал открытие, что мой вентилятор дует со скоростью около 2 м/с. Дальше в течение паузы видим постепенное увеличение температуры и отличную корреляцию между рассчитанной и измеренной температурой. В конце поставил вентилятор с другой стороны и получил 2 м/с в обратном направлении с падением температуры. Ура, товарищи, это работает!

Программа расчета скорости ветра

Код программы второй версии анемометра из двух ультразвуковых датчиков

#include <dht.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#define Trig 4         // HC-SR04 №1
#define Echo 2
#define Trig2 8        // HC-SR04 №2
#define Echo2 12
#define ONE_WIRE_BUS 7 // DS18B20
#define Steps

dht DHT;

#define DHT21_PIN 0    // DHT21
static const float defDist  = .2121; // m
static const float defDist2 = .2121; // m
float Tcalc = 0;

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature. 
DallasTemperature sensors(&oneWire);
void setup() 
{ 
pinMode(Trig, OUTPUT);
pinMode(Echo, INPUT);
pinMode(Trig2, OUTPUT);
pinMode(Echo2, INPUT);
Serial.begin(57600); 
  // Start up the library
  sensors.begin();
Serial.println("X Distance  Tds18820  Tcalc Tdht  Hum V");
} 
unsigned long impulseTime=0; 

void loop() 
{
  float temp = 0;
  float DHTtemp = 0; 
  float DHThum = 50;
  // READ DHT DATA
  int chk = DHT.read21(DHT21_PIN);
  if (chk == DHTLIB_OK) 
    {
      DHTtemp =DHT.temperature; 
      DHThum = DHT.humidity;
    }
  if (sensors.getDeviceCount() > 0)
    {
      sensors.requestTemperatures(); // Send the command to get temperatures DS18820
      temp = sensors.getTempCByIndex(0); //DHTtemp;
    }
  float dist = 0;
  float dist2 = 0;

  unsigned long impulseTime=0; 
  unsigned long impulseTime2=0; 
  int N=50;
  for (int i = 0; i <N; i++)
  {

  digitalWrite(Trig, HIGH); 
  delayMicroseconds(10);
  digitalWrite(Trig, LOW);
  impulseTime +=pulseIn(Echo, HIGH);
  delay(50);
  digitalWrite(Trig2, HIGH); 
  delayMicroseconds(10);
  digitalWrite(Trig2, LOW);
  impulseTime2 +=pulseIn(Echo2, HIGH);
  delay(50);
  
  }

  //float P = 101325;
  float P = 761 * 133.3;
  float M = (28.95-10.934*DHThum/100*(133.3*4.579*exp(17.14*Tcalc/(235.3+Tcalc)))/P)/1000;  //M = 0.02895;
  float R= 8.31447;
  float X = 1.4 * R/M ;     
  Tcalc = sq((defDist+defDist2)*N/(impulseTime+impulseTime2) * 1e6)/X - 273.15;
  float c = sqrt( X *(Tcalc+273.15));
  dist = impulseTime * c / 1e6 /N;
  dist2 = impulseTime2 * c / 1e6 /N;

  float Speed_of_sound = defDist*N/impulseTime * 1e6;
  float Speed_of_sound2 = defDist2*N/impulseTime2 * 1e6;

  float v = (Speed_of_sound-Speed_of_sound2)/2;
  //float v2 = c- Speed_of_sound2;
  //float v3 = sqrt(sq(v) + sq(v2));
  //int wd = int(atan(-v/v2)*180/3.1416);
  //if (v>0) {wd+=90;} else {wd+=270;}

  Serial.println(String(impulseTime) + char(9) + String(impulseTime2) + char(9) + String(dist, 5) + char(9) + String(dist2, 5) + char(9) 
  + String(temp) + char(9) + String(Tcalc) + char(9) + String(DHTtemp)+ char(9) + String(DHThum)+ char(9) + String(M,5) + char(9) + String(v));

}

Программа будет работать и без датчиков DHT-21 и DS18B20. DS18B20 для вычислений в этом коде нигде не задействован — только выводится в терминал как эталон. Без датчика влажности температура будет рассчитываться как для воздуха с 50% влажностью. На практике это вносит очень маленькую погрешность. На измерения скорости ветра эти датчики вообще не оказывают никакого влияния.

Собственно это все что можно выжать из двух HC-SR04. Для получения вектора скорости ветра на плоскости нужно добавить еще 2 датчика перпендикулярно первым и по формулам первой версии получить полную скорость и направление. Этим займусь как только приедут заказанные дополнительные датчики.

P.S.

Датчики давно приехали, конструкцию переделывал еще 2 раза и в конце концов он заработал как надо, но до крыши этот ультразвуковой анемометр так и не доехал, поэтому до сих пор продолжения и не написал, хотя идея рабочая.

Ультразвуковой анемометр на двух HC-SR04: 10 комментариев

  1. Евгений, может лучше гаджетом для сетей займемся? Нужен датчик наличия нелинейности в нагрузке. Некий шазам. Есть идея иметь автомат, который понимает что включено в доме. Контроль качества для сетей и система контроля за включенными дорашними потребителями. Для сетей более высоких классов — вычисление статических характеристик нагрузок…

    1. Да, Игорь, будет и для энергетики маленькие поделки. Планирую возродить свой старый проект частотомера, а на его основе добить дешёвый WAMS. Давно хочу померить угол между двумя розетками в Москве — это и есть прототип измерения стат-хар-к нагрузки от частоты. Я даже второй GPS уже купил. Что касается твоей идеи, то мой умный дом еще только на 1 ступеньке развития. «умный дом» — это и есть система контроля что включено. Если дать этой системе доступ к онлайн котировкам стоимости эл.эн., то будет энергосистеме счастье в виде ровного графика нагрузки :).

    2. Котировки — это дело далекое, а вот шазам для качества и диагностики оборудования дело архиважное. Дорога вамсам и цифровым подстанциям. Короче все что смарт — то если лезть в синусоиду

  2. Евгений, здравствуйте, очень занимательная статья, но продолжения нет почти год, у вас что то не получилось, или вы остановились на этом этапе?

    1. Была третья версия, когда приехали датчики. Было мало времени и крестовину я сделал тяп-ляп, поэтому появился отраженный сигнал и в целом система не заработала. Нужно переделывать крестовину, а времени пока на это нет. Скорее всего доделаю этой зимой.

      1. Все понятно! Желаю Вам удачи! Если есть возможность, можете скинуть на почту код для варианта с крестовиной, я не продвинутый пользователь, но очень хочется разобраться)

  3. Расскажи для новичка. Где взять библиотеки которые использовал ты
    #include
    #include
    #include

    И как правильно их установитьподключить?

  4. А если не переносить свистелки:
    Располагаем друг напротив друга 2 платы.
    Запускаем от одного и того же импульса.
    Только в одном цикле слушаем один, а в следующем — другой.
    Они ведь будут видеть первый по времени свист после запуска и думать, что это его собственный сигнал. А на второй они уже не среагируют…
    Меньше проводов. Только длину проводов с импульсами запуска нужно сделать одинаковыми…

    Ваше мнение?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *